## Information Disclosure as a Matching Mechanism: Theory and Evidence from a Field Experiment

Steve Tadelis, UC Berkeley

Florian Zettelmeyer, Northwestern University and NBER

# **Information As a Matching Mechanism**

- The amount of information in markets influences their outcomes
- **This project** is <u>designed</u> to test the effect of information disclosure in a common large business auction setting:
  - 1. We create and manipulate the availability of information about quality to buyers
  - 2. We measure how auction outcomes vary with information disclosure

#### - Results: Surprise! Information as a Matching Mechanism

- 1. Expected revenues increase at all quality levels
- 2. Most pronounced at the **extremes** (high *and* low)
- 3. Consistent with a **matching/sorting effect** that we propose
- 4. Further implications of matching/sorting are verified

#### - General implications of matching/sorting:

- Other platforms with simultaneous auctions (e.g., eBay)
- Procurement auctions with endogenous entry
- Labor markets

#### First understand the auction process

#### **AUCTION PROCESS**

- Auction on Wednesday (≈1500 dealer cars)
- Cars checked in Thursday through Tuesday
- At check-in the car is assigned
  - a work order number
  - a lane (1-12) and "<u>run number</u>"





#### The study was designed as a randomized experiment

#### **EXPERIMENT DESIGN**

- Inspect cars: SCR
  - Scores 1.0 5.0 (and estimated costs)
  - even last digit of VIN: SCR is published
  - odd last digit of VIN: SCR is NOT published
  - Researchers see SCRS for all cars
- Compare cars with published and unpublished SCRs
- Several tests confirm the randomization is valid

#### **INSPECTIONS PER WEEK**

| Sale Week | NO ECR | ECR   | Total |
|-----------|--------|-------|-------|
| 21        | 237    | 223   | 460   |
| 22        | 195    | 186   | 381   |
| 23        | 324    | 330   | 654   |
| 24        | 281    | 365   | 646   |
| 25        | 303    | 344   | 647   |
| 26        | 229    | 250   | 479   |
| 27        | 290    | 305   | 595   |
| 28        | 245    | 245   | 490   |
| 29        | 267    | 281   | 548   |
| 30        | 231    | 269   | 500   |
| 31        | 233    | 247   | 480   |
| 32        | 214    | 215   | 429   |
| 33        | 237    | 154   | 391   |
| 34        | 225    | 185   | 410   |
| 35        | 150    | 140   | 290   |
| 36        | 73     | 85    | 158   |
| 37        | 90     | 107   | 197   |
| 38        | 71     | 84    | 155   |
| 39        | 82     | 104   | 186   |
| Total     | 3,977  | 4,119 | 8,096 |
| %         | 49.1%  | 50.9% | 100%  |

### Effect of SCRs on the PROBABILITY OF SALE is Large

#### FRACTION OF CARS SOLD PER WEEK BY SCR



- The effect of SCRs is mostly on proportion sold, not prices!
- There me be a problem: salience/substitution...

## Information should matter where it is a surprise

- Bidders have lots of information without SCRs (mileage, year...) which can be a noisy signal of SCR (Table 11).
- Effect of information should be on "surprises"

Table 12: Sales probability by difference of expected condition grade (CG), weeks 31-39

| Tercile of Difference | # of | No posted | Posted |            |              |             |         |
|-----------------------|------|-----------|--------|------------|--------------|-------------|---------|
| from Expected CG      | Cars | SCR       | SCR    | Difference | % Difference | z-statistic | p-value |
| Worse than expected   | 901  | 0.338     | 0.403  | 0.065      | 19.2%        | 2.00        | 0.045   |
| Close to expected     | 897  | 0.416     | 0.425  | 0.009      | 2.2%         | 0.28        | 0.78    |
| Better than expected  | 898  | 0.421     | 0.53   | 0.122      | 29.0%        | 3.27        | 0.001   |

- bad news is good! Inconsistent with information disclosure models
- Note: no-news does not cause a shift  $\rightarrow$  there is no "salience" effect
- The constant probability across periods may be due to a time trend
- Small effect on prices (marginally positive for bad news!)

# **Information in Markets: Existing Theory**



- Consider a  $2^{nd}$  price auction with (≥) 4 bidders, (≥) two of each type
- E[Revenue | no info] = 3
- E[Revenue | info] = 3.25 !!
  - Idea: information changes the expected 2<sup>nd</sup> order statistic
    - ("Linkage Principle" or "Allocation Effect".)
- Information prices "diverge" from the no-information price (true for any standard information disclosure model)

# Information in Markets: A "Matching/Sorting" Model

- A2: Good and bad cars sell simultaneously on two separate platforms
- A3: Bidders <u>know the value when they see the car</u>, but they <u>don't know</u> where each car is (no ex-post uncertainty about value)
- Without information: each bidder randomly chooses a platform
  - Expected 2<sup>nd</sup> value is below the green line because won't always have two 5 "strong" types
- With information: types will sort according to their strength
  - If not, someone wants to move
  - Expected 2<sup>nd</sup> value is on green line
  - All news is good news!

- High type High type Low type tods!
- Information matches buyers to goods!
  - Release of information is good for the seller (like Linkage)
  - Information increases prices for all quality levels (unlike Linkage)

# **Sorting with Reserve Prices: Implications**

- Sellers have outside options:
  - They can sell to wholesalers
  - They can run the car through the auction again and again...
- Setting reserve prices:
  - With low opportunity costs of time, **reserve price** should be close to the **upper envelope**



- Effect of more information is consistent with the data:
  - Likelihood of meeting the reserve goes up
  - Effect is larger as you move away from the "middle" (Table 9)
  - Conditional on selling, not much of a (positive) price effect (Table 10)
- Need to verify what we can to support matching/sorting theory:
  - Heterogeneous bidders
  - Test other empirical implications (when info matters; better matching)

## **Buyer's are Heterogeneous (Horizontally)**

- Heterogeneous buyers  $\rightarrow$  the grade of "early" purchases should predict "late" purchases. Consider sample halves for each bidder:
  - average CGs correlation = 0.45 (p-value < 0.01, 350 dealers.)
  - Transition Matrix per buyer by quintile of buyer average grades

| Conditi   | on Grade |        | "Late" purchases |        |        |        |       |  |
|-----------|----------|--------|------------------|--------|--------|--------|-------|--|
|           | Quintile | 1      | 2                | 3      | 4      | 5      | Total |  |
|           | 1        | 34     | 14               | 9      | 7      | 2      | 66    |  |
|           |          | 51.52% | 21.21%           | 13.64% | 10.61% | 3.03%  | 100%  |  |
|           | 2        | 28     | 21               | 17     | 10     | 10     | 86    |  |
|           |          | 32.56% | 24.42%           | 19.77% | 11.63% | 11.63% | 100%  |  |
| "Early"   | 3        | 13     | 21               | 24     | 15     | 12     | 85    |  |
| purchases |          | 15.29% | 24.71%           | 28.24% | 17.65% | 14.12% | 100%  |  |
|           | 4        | 19     | 7                | 15     | 21     | 30     | 92    |  |
|           |          | 20.65% | 7.61%            | 16.30% | 22.83% | 32.61% | 100%  |  |
|           | 5        | 8      | 9                | 17     | 15     | 29     | 78    |  |
|           |          | 10.26% | 11.54%           | 21.79% | 19.23% | 37.18% | 100%  |  |
|           | Total    | 102    | 72               | 82     | 68     | 83     | 407   |  |
|           |          | 25.06% | 17.69%           | 20.15% | 16.71% | 20.39% | 100%  |  |

## Information should help where it is a surprise

- Recall: Bidders have lots of information without SCRs (mileage, year...) which can be a noisy signal of SCR
- Effect of information should be on "surprises" in only for weeks 31-39

Table 12: Sales probability by difference of expected condition grade (CG), weeks 31-39

| Tercile of Difference | # of | No posted | Posted |            |              |             |         |
|-----------------------|------|-----------|--------|------------|--------------|-------------|---------|
| from Expected CG      | Cars | SCR       | SCR    | Difference | % Difference | z-statistic | p-value |
| Worse than expected   | 901  | 0.338     | 0.403  | 0.065      | 19.2%        | 2.00        | 0.045   |
| Close to expected     | 897  | 0.416     | 0.425  | 0.009      | 2.2%         | 0.28        | 0.78    |
| Better than expected  | 898  | 0.421     | 0.53   | 0.122      | 29.0%        | 3.27        | 0.001   |

Table 13: Sales probability by difference of expected condition grade (CG), weeks 21-30

| Tercile of Difference | # of | No posted | Posted |            |              |             |         |
|-----------------------|------|-----------|--------|------------|--------------|-------------|---------|
| from Expected CG      | Cars | SCR       | SCR    | Difference | % Difference | z-statistic | p-value |
| Worse than expected   | 1802 | 0.383     | 0.375  | -0.08      | -0.2%        | -0.36       | 0.72    |
| Close to expected     | 1800 | 0.429     | 0.452  | 0.02       | 4.6%         | 0.99        | 0.32    |
| Better than expected  | 1800 | 0.477     | 0.483  | 0.005      | 1.3%         | 0.23        | 0.82    |

# Is More Information Creating Better Matches?

- If seller's are using information:
  - 1. They should focus more
  - 2. Less variance in purchases
- Data limitations:
  - 1. Can't see where they are
  - 2. Can see what they buy, but variance maybe the same due to the **reserve price** (it is...)
- Indirect effect of more information?
  - random assignment of vehicles to lanes prior to SCRs being performed
  - weeks 21-30: bidders have less information so the benefit of switching lanes in search of better matched vehicles is not large.
  - After week 30, more information about the vehicles <u>with SCRs</u> increases the benefit of switching lanes
  - → given # of vehicles a bidder buys, he should visit more lanes after week 30 to buy the "right" cars with SCRs



#### **Indirect Evidence of Better Matching**

Table 16: Number of lanes used by dealers per week<sup>†</sup>

|                             | All Cars | ECR Cars | Non-ECR Cars |
|-----------------------------|----------|----------|--------------|
| Week 31-39                  | 21**     | 31*      | 17+          |
|                             | (.067)   | (.12)    | (.1)         |
| Number of cars              | .47**    | .42**    | .49**        |
|                             | (.05)    | (.075)   | (.076)       |
| Week 31-39 * Number of cars | .17**    | .25*     | .13          |
|                             | (.055)   | (.098)   | (.082)       |
| Buyer Fixed Effects (837)   | yes      | yes      | yes          |
| Constant                    | .58**    | .64**    | .55**        |
|                             | (.062)   | (.097)   | (.096)       |
| Observations                | 2690     | 1401     | 1289         |
| R-squared                   | 0.779    | 0.796    | 0.843        |

# Take Away

#### - Information as a "matching mechanism":

- In Markets with heterogeneous bidders and multiple (exclusive) auctions, information makes competition more "effective" by matching buyers to goods
  - This is even when conditional on seeing the item, information adds no value (which is not the case for the standard auction approach)
- Information as a "matching mechanism" <u>may be</u> more important than information-rent effects (Linkage Principle)

# - More generally:

- Other simultaneously exclusive platforms (online auctions);
- Sequential procurement;
- Labor markets;
- Mergers and acquisitions

![](_page_15_Figure_0.jpeg)

### **Controlling for Trends: Diff-in-Diff Using Fleet Sales**

| Table 5: Linear probability model | diff-in-diff specification |
|-----------------------------------|----------------------------|
|-----------------------------------|----------------------------|

|                                                  |         |           | _                  |
|--------------------------------------------------|---------|-----------|--------------------|
| Dependent Variable: Sold                         | (1)     | (2)       | ]                  |
| Dealer-consigned car, no posted SCR              | 24**    | 27**      |                    |
|                                                  | (.012)  | (.015)    | Dealer sales       |
| Dealer-consigned car, posted SCR                 | 23**    | 27**      | Weeks 21-30        |
|                                                  | (.012)  | (.015)    |                    |
| Week 31-39                                       | 07**    | 14**      | Secular trend      |
|                                                  | (.0066) | (.015)    |                    |
| Week 31-39 * Dealer-consigned car, no posted SCR | .031    | .029      | No significant     |
|                                                  | (.019)  | (.02)     | Change for no SCR  |
| Week 31-39 * Dealer-consigned car, posted SCR    | .089**  | .087**    | Significant change |
|                                                  | (.02)   | (.019)    | for cars with SCR  |
| Mileage on Car                                   |         | 1.6e-07   |                    |
|                                                  |         | (1.0e-07) |                    |
| Green light                                      |         | .14**     |                    |
|                                                  |         | (.0081)   |                    |
| Yellow light                                     |         | 011       |                    |
|                                                  |         | (.01)     |                    |
| Blue light                                       |         | 11**      |                    |
|                                                  |         | (.0096)   |                    |
| Model Year Fixed Effects                         | no      | yes       |                    |
| Vehicle Segment Fixed Effects                    | no      | yes       |                    |
| Nameplate Fixed Effects                          | no      | yes       |                    |
| Sale Week Fixed Effects                          | no      | yes       |                    |
| Constant                                         | .67**   | .66**     | Fleet sales        |
|                                                  | (.0049) | (.2)      |                    |
| Observations                                     | 35287   | 35287     |                    |
| R-squared                                        | 0.034   | 0.119     | 17                 |

# SCRs were effective at increasing webcast bidding even without e-mail promotions (reality check...)

Table 6: Percentage of dealer-consigned cars which received an online bid

|             | No posted SCR | Posted SCR              | Difference | % Difference | z-statistic | p-value |
|-------------|---------------|-------------------------|------------|--------------|-------------|---------|
| All weeks   | 2.54%         | 3.45~%                  | 0.91%      | 35.8%        | 2.40        | 0.016   |
|             | 3,980 cars    | $4{,}118~\mathrm{cars}$ |            |              |             |         |
| Weeks 21-30 | 2.69%         | 3.50%                   | 0.81%      | 30.2%        | 1.73        | 0.084   |
|             | 2,605  cars   | 2,797 cars              |            |              |             |         |
| Weeks 31-39 | 2.25%         | 3.33%                   | 1.08%      | 47.7%        | 1.70        | 0.089   |
|             | 1,375  cars   | 1,321  cars             |            |              |             |         |

Table 7: Percentage of sold dealer-consigned car with where winning bid was placed online

|             | No posted SCR | Posted SCR  | Difference | % Difference | z-statistic | p-value |
|-------------|---------------|-------------|------------|--------------|-------------|---------|
| All weeks   | 3.07%         | 4.72 %      | 1.65%      | 53.6%        | 2.50        | 0.01    |
|             | 1,660 cars    | 1,821  cars |            |              |             |         |
| Weeks 21-30 | 3.21%         | 4.51%       | 1.29%      | 40.3%        | 1.62        | 0.10    |
|             | 1,121  cars   | 1,220  cars |            |              |             |         |
| Weeks 31-39 | 2.78%         | 5.15%       | 2.37%      | 85.3%        | 2.03        | 0.04    |
|             | 539  cars     | 601  cars   |            |              |             |         |

- E[# of bidders per 100 auctions] goes up from 3.6 to 4.7 (Table 8)