Post-Tender Corruption and Risk Allocation: Implications for Public-Private Partnerships

Elisabetta Iossa, U.of Rome Tor Vergata, CMPO, EIEF David Martimort, Paris School of Economics-EHESS

Conference: "Contracts, procurement and Public-Private Agreements" Paris, 30-31 May 2011

Background

- Anti-corruption program in public procurement to avoid that corrupted officials alter procurement process to benefit a contractor in exchange for a bribe
- Fighting corruption at tendering stage: rules for: (i) transparency; (ii) adequate advertising of tender calls; (iii) sufficient time to prepare bids; (iv) restrict the discretion on auction format or award criterion; (v) introduce information technology to reduce bids manipulation (Lengwiler and Wolfstetter, 2006).
- → Redesign tendering process: (i) Underweight on quality;
 (ii) increase tendering costs; (iii) less use of local information

Background 'ctd

- Corruption at contract execution stage: (i) Use of sub-standards materials hidden by complacent public officials; (ii) False materials invoices; (iii) Undue price revisions or contract lengthening when specific circumstances arise; (iv) undue supplementary works; (v) penalties for underperformance waived (Søreide, 2002)
- ⇒ **Redisign contractual arrangement**: (i) limit on supplementary works; (ii) limit on price revisions.

This paper

- (i) Role of **payment scheme and risk allocation** to reduce corruption at contract execution stage.
- (ii) Implications on **benefit and cost** of procurement based on high risk transfer, **PPPs**.
- Focus: `Specific Circumstances' clauses:
 - Supervening events
 - Compensation Events
 - Relief Events'
 - □ Contingent contracts reduce transparency (e.g. revenue guarantees in Hemming, 2006)

The model

- Risk neutral public authority
- Risk averse contractor builds and manages an infrastructure
- Verifiable Revenue from the service

$R=\theta+e+\zeta$

- θ : shock at building stage; element of verifiability \cdot θ unknown ex-ante; privately observed by contractor ex post
- ζ : shock at operational stage; not verifiable.

Monitoring

- Public official generates a binary signal : σ∈{θ,Ø}
 - **σ**=θ w.p. ε
 - σ hard information
- Official infinite risk-aversion (limited liability)
- Contract btw Autority and Contractor:

$\alpha(\theta,\sigma)+\beta(\theta,\sigma)R$

- Contract btw Autority and Official: $s(\sigma)$
- Bribe $\boldsymbol{\tau}$ btw Official and Contractor
- official benefits: $k\tau$
- **k** : type of of Oficial; private information

Strong institutions

- Perfect monitoring $\varepsilon \equiv 1; \kappa = 0 \Rightarrow \theta$ verifiable
- Contractor chooses operational effort $e(\theta)$ to max

```
\alpha(\theta)+\beta(\theta)(\theta+e)-e^2/2-r\sigma^2\beta^2/2
```

 $\Rightarrow e(\theta) \equiv \beta(\theta)$

- Only net revenues $R' = R \cdot \theta = e + \zeta$ matter for incentives purposes
- \Rightarrow No value from transferring building risk θ to the contractor
- Optimal to **fully insure** contractor against θ shocks $U(\theta^{H})=U(\theta^{L})$:
- Contractor keeps **constant share** of revenues: $\beta(\theta)$ constant \cdot
- Contrator receives **full monetary compensation** (specific circumstances clauses) : $\Delta \alpha = \beta \Delta \theta$

Weak institutions

- ε<1;κ>0
- Contract now contingent on reported signal
- If $\sigma_1 = \theta$ (informative monitoring): as before (full insurance and monetary compensations)
- If $\sigma_1 = \emptyset$ (uninformative monitoring): asymmetric information btw Authority and Contractor
- Contractor reports θ : incentive to claim always negative shock to receive a compensation $U(\theta^{H})-U(\theta^{L})\geq\Delta\theta\beta^{L}$
- \Rightarrow full insurance not possible $U(\theta^{H}) > 0 > U(\theta^{L})$
- \Rightarrow contractor now bears **endogenous risk**, with associated risk premium $\phi(\Delta U_2)$

The cost of corruption

- Stake from corruption: the additional risk premium $\phi(\Delta U_2)$
- With public officials having all barganining power, he gets $k\phi(\Delta U)$.
- Anti-corruption program:

 $s_1-s_2 \ge k\phi(\Delta U)$

Anti-corruption program

To reduce corruption need to

• (i) Make public officials **accountable** and increase payment s₁ to official if informative monitoring;

 $s_{1}{\equiv}k^{*}\varphi(\Delta U)$

- (ii) **Increase risk transfer** to contractor: contractor receives full compensation only if public official is able to prove that negative shock hit the firm. Otherwise, the contractor is only partially compensated.
- (iii) Reduce revenue share to contractor to reduce stake from corruption $\phi(\Delta U)$ since $\Delta U = \Delta \theta \beta^{L}$

'ctd

• Corruption is an equilibrium-phenomenon

$$s_1 = k^* \phi (\Delta \theta \beta^L)$$

• All public officials with $k > k^*$ will be corrupted

Policy implications

- Guasch (2004), and Guash & Straub (2009) emphasize cost of contract renegotiation due to corruption
- We emphasize cost of contingent clauses due to corruption
- In countries with weak institutions, use of contingent contracts leaves more scope for corruption, which increases cost of risk transfer and reduces the scope for PPP.
- When **project risks are higher** ($\Delta \theta$ greater), the welfare loss from corruption under PPP is greater.