On Procurement Efficiency in Infrastructure for Developing Countries

Antonio Estache (ULB, ECARES) (...and Atsushi limi (World Bank))

The goal of this presentation:

Sharing the results of recent empirical research on the experience of procuring infrastructure;

... based on data on development aid allocated to infrastructure

(roughly a summary of the recent book published by CEPR)

Overview

- Some context
- Some recurring concerns
- The specific questions
- A quick review of earlier research
- The data
- The model
- The results
- The implications

Some context:

How big is infrastructure procurement?

Infrastructure procurement in LDCs

- Varies quite a bit in value
 - □ (driven by technology, initial stock levels ,...)
- But ranges from 5-15% of GDP
 - (if all gvt levels & public enterprises are accounted for)

What we know about how well the procurement of these projects works

- Optimism demand bias is quite common
 - KILLS budgets when demand does not follow
 - ...and so are <u>cost overruns</u> with already high costs megaprojects--most in infrastructure (av. 75%)
 - See Flyvbjerg et al (2003-2007) for OECD
 - See some of the new results in Estache-limi (2009-2011) for LDCs
- Transparency International (TI) Bribe Payers Index shows that public works contracts & construction are bribery intensive!
 - Total bribes in public procurement at +/-3.5% of world procurement spending).
 - Also observation that high costs markups are often strongly correlated with concerns about corruption and collusion

A few more things we know...

- Long record of lack of competition in the sector
 - Efficient (i.e., competitive) public procurement has been called for by WTO for a long time.
- Still strong de facto reluctance of donors to open business opportunities to local actors to improve competition
 - Lack of experience and financial capacity arguments

Our focus:

how could different rules of competition improve efficiency in infrastructure procurement ???

- Empirical assessment of the design of competition in auctions on costs of projects procured and number of bidders
 - Focus on auction from development agencies
- So... start with the relevant dimensions of auctions for which we can find data
 - The viewpoint of gvt? minimize procurement costs or maximize bid generated for a given procurement cost
 - The viewpoint of firms? maximize the probability of winning and hence the net payoffs to the auction...how so?

The dimensions of the procurement game from the government viewpoint

- Frequency of auctions (number of projects)
- Procurement arrangements (lot packages)
- Who could be contractors—domestic, international, joint ventures?
- International vs. local competitive bidding?
- Auction format....usually first-price sealedbid...but could be different.
- Information disclosure
- Technical specification
- How to exclude those who are likely to fail to meet the contracts? Prequalification or twoenvelope?

The dimensions of the procurement game from the firms' viewpoint

- Decision whether to participate in competition (yes vs. no),
- Assessing the likelihood to win and calculating the best bid
- Looking for possible bidding partners
- Room for collusion and/or corruption, low balling....?

What kind of knowledge are we starting with from academic research about auction in procurement?

- Key stylized fact: ODA procurement relies on simple firstbid sealed price auctions=> all bidders have the incentive to submit their true equilibrium bid prices based on their private information
- Matching basic auction theory: The winning bid tends to approach the lowest possible procurement price, as competition becomes intense (even if there are exceptions...)
- Matching basic empirical evidence?
 - Generally supportive of basic theory
 - But the degree of competition required varies across sectors.

Since we want to zoom on the efficiency gains from more competition in auctions, would be good to have a sense of how strong competition has to be

- So...how many bidders are required for an auction to be seen as being competitive enough according to earlier research?
 - Does not have to be much (Tadelis et al. in a few papers)
 - But interesting to see that it is quite easy to come up with a reasonably robust measure
 - Find when the marginal impact of one more bidder on the equilibrium bid is no longer statistically significant ...that's when you have the optimal number of bidders!!!
 - Evidence so far?
 - □ For road projects, 8 (Gupta, 2002).
 - □ For offshore oil markets, 7 to 10 (Brannman et al., 1987).
 - □ For ODA projects, 8 (limi, 2006).

A look at <u>new</u> evidence on the relevance of auction design for the level of bids specific to various infrastructure sub-sectors

Our data (1)

- Procurement contracts from the World Bank and the Japanese Development Agency
- Three infrastructure sectors:
 Roads, water and sewerage, and electricity.
- 211 auctions (contracts) for 69 projects in 29 developing countries from 1997 to 2007.
 - This means...our sample represents only 1% of total ODA or 5% of infrastructure assistance.
 - Country coverage is by no means all-inclusive.
 - Nature of projects may be biased by agency strategic choices
- But the data may be rich enough to analyze bidding behavior.
 - In 211 auctions, 862 bids (winning and losing).
 - □ In 862 bids, 1,637 firms in total.
 - All firms are identifiable.
- Note: no renegotiation in this data set!

Our data (2)

Expected Contract Size

	No. of	С	Total contract			
contracts		Mean S	Std.Dev.	Min Max		amount
Road	86	26.8	27.9	0.3	146.0	2,020
Water	78	15.9	21.7	0.3	154.3	1,217
Electricity	47	55.2	94.7	0.2	406.6	2,934

1/ The figures are calculated on the engineering cost estimate basis.

Total Project Cost and Lot Division

	No. of	Total pro	ject cost	(millior	n US\$)	Number of lots			
	projects	Mean S	td.Dev	Min	Max	Mean S	Std.Dev	Min	Max
Road	24	404	552	36	2,720	14.3	21.9	1	108
Water 1/	22	196	139	44	496	11.3	7.5	1	26
Electricity	22	322	252	84	858	6.9	4.6	1	20
1/ Excluding a rural water project composed of more than 6,000 sub-projects.									

Technical Capacity per Contract

	No. of	Т			
	contracts	Mean S	td.Dev.	Min	Max
Length of roads (km)	86	53	72	2	448
(Waste)water treatment capacity (1,000 m3 per day)	29	179	174	2	600
Total water iron pipe length (km)	49	60	78	0	376
Power generation installed capacity (MW)	16	370	377	30	1200
Total power transmission/distribution line length (km)	13	139	203	4	765

Number of Firms Participating in Competitive Bidding

	Number	Share of	Share of
	of firms	local (%)	foreign (%)
Road	778	60.0	40.0
Water	546	74.9	24.2
Electricity	313	31.9	68.1
Total	1,637	59.6	40.4

Basic data analysis: Competition in infrastructure procurements seems limited ...especially in the water and electricity sectors.

Number of bidders participating in auctions

	Number	Share of	Share of
	of bidders	local (%)	foreign (%)
Road	394	70.3	37.6
Water	329	79.6	29.2
Electricity	139	35.3	71.2
Total	862	68.2	39.8

Tracking the key variables through a bid function

We estimate a reduced form equilibrium bid function:

 $b_{it} = COST_t\alpha_1 + MONTH_t\alpha_2 + X'_t\beta + Z'_i\gamma + g(N_t;\delta) + \varepsilon_{it}$

- b_{it} = Firm *i*'s bid amount at auction *t*.
 - Accounts for all bids, winning and losing bids
- *COST* = Engineering cost estimate.
- *MONTH* = Estimated contract duration.
- *X* = Sector specific technical aspect
 - (i.e. rehabilitation vs new projects, size of projects, location, donor dummy since we have 2 donors...)
- **Z** = Bidder characteristics, i.e., nationality, expertise, ...
- N = Number of bidders who were prequalified and participated in auction

Functional form?

- We have no preconceived idea on the functional form for the bid function
 - We test 4 specifications in terms of the impact of the number of bidders on bid level
 - Linear, quadratic, log-linear and "non-parametric"
 - "non parametric" simply means that we plug into the model all the details on the number of bidders and is simply a way of identifying as of how many bids, the efficiency gains are no longer statistically significant
- For each sector, we test 2 models:
 - In the first, engineering cost is an independent variable
 - □ In the second, it is not included

An important footnote

- What do we get out of including engineering cost as an independent variable?
 - Some econometric value
 - it allows us to controls for unobservable technical heterogeneity across contracts which are expected to be reflected in the monetary valuation of the engineering costs.
 - Some useful policy insights: it tells something useful on cost over- and under-runs
 - If its coefficient is <1: engineering cost systematically overestimates the true cost => costs underruns take place
 - If its coefficient is >1: engineering cost systematically overestimates the true cost => costs overruns take place

Econometrics?

- all OLS reported here with white hetero
 - (We also have more robust versions of the model which allows for effective test of endogeneity of N and of risks of omitted variables)
- robust estimates for standard errors.
- Consistent with theory and earlier empirical auctions.
- No problem of omitted variables

Roads											
	Linear	Quadratic	Log- linear	Non- parametric	Linear	Quadratic	Log- linear	Non- parametric			
N	-0.52 *** (0.09)	-0.12			-1.00 ***	-1.61 ** (0.81)					
N^2	(0.0))	-0.02			(0.11)	0.03					
$\ln(N)$		(0.03)	-4.82 ***			(0.04)	-9.50 ***				
N-2			(0.88)	8 57 **			(1.23)	8 86 *			
14-2				(3.39)				(4.64)			
N=3				6.54 **				16.93 ***			
				(2.92)				(3.93)			
N=4				6.37 ***				13.00 ***			
N 5				(1.98)				(2.29)			
N=5				2.45				8.70 (1.81)			
N=6				2.94 **				2.06			
				(1.24)				(1.82)			
N=7				1.39				5.45 ***			
				(1.50)				(1.66)			
N=8				-0.53				9.24 **			
				(2.41)				(3.89)			
N=9				2.31				10.11 ***			
N 10				(2.29)				(3.07)			
<i>N</i> =10				4.50				(1.38)			
N - 11				0.14				-6.03			
				(4.56)				(6.34)			
Length	0.12	0.12	0.11	0.12	0.25 ***	0.24 ***	0.23 ***	0.29 ***			
-	(0.08)	(0.08)	(0.08)	(0.08)	(0.09)	(0.09)	(0.09)	(0.09)			
Length ² 1/	-0.41	-0.41	-0.39	-0.43	-0.65	-0.64	-0.61	-0.75			
	(0.40)	(0.40)	(0.40)	(0.43)	(0.45)	(0.45)	(0.45)	(0.47)			
Lane	12.57 ***	12.15 ***	12.98 ***	12.74 ***	14.62 ***	15.23 ***	15.58 ***	15.94 ***			
	(1.86)	(2.04)	(1.97)	(2.27)	(2.12)	(2.41)	(2.27)	(2.57)			
Lane ²	-1.10 ***	-1.06 ***	-1.13 ***	-1.10 ***	-1.22 ***	-1.28 ***	-1.31 ***	-1.30 ***			
	(0.17)	(0.19)	(0.18)	(0.21)	(0.19)	(0.22)	(0.21)	(0.25)			
D (New roads)	4.23	4.50	3.76	3.06	10.49 ***	9.99 **	9.28 **	7.56 *			
	(3.17)	(3.17)	(3.18)	(3.40)	(4.02)	(4.13)	(4.05)	(4.12)			
D (Rehabilitation work)	1.67	2.02	1.16	1.14	-0.65	-1.15	-1.72	-4.59			
	(2.14)	(2.19)	(2.16)	(2.62)	(3.18)	(3.38)	(3.24)	(3.50)			
Engineering cost	0.53	0.53	0.52	0.54							
Estimated duration	(0.04)	(0.04)	(0.04)	(0.05)	0.00	0.11	0.12	0.04			
Estimated duration	-0.50	-0.29	-0.51	-0.25	-0.09	-0.11	-0.12	-0.04			
Donor 1	-6.48 **	-6.68 **	-6,13 **	-7,27 **	-6.06 *	-5,76	-5,35	-1.82			
	(2.58)	(2.65)	(2.53)	(3.22)	(3.69)	(3.79)	(3.67)	(4.00)			
Constant	-1.67	-3.14	3.25	-9.71	-4.95	-2.66	5.27	-27.25 ***			
	(4.50)	(4.43)	(4.40)	(5.75)	(6.13)	(6.27)	(6.10)	(6.80)			
Obs.	394	394	394	394	394	394	394	394			
R-squared	0.932	0.932	0.932	0.933	0.903	0.903	0.905	0.909			
Number of dummies											
Country	11	11	11	11	11	11	11	11			
Bidder nationality	19	19	19	19	19	19	19	19			

FOR ROADS:

Coef. of N is <u>negative and</u> <u>significant.</u>

Nonparametric: <u>Coefs are steadily</u> <u>declining.</u>

Coef. of engineering cost: 0.5 (<u>over-</u> <u>estimating at time</u> of appraisal).

1/ For presentation purposes, the coefficients are multiplied by 1,000.

Note: The dependent variable is the bidding amount. The robust standard errors are shown in parentheses. *, ** and *** indicate the 10%, 5% and 1% significance levels, respectively.

		vvale	anu	Sewe	lage			
	Linear	Quadratic	Log- linear	Non- parametric	Linear	Quadratic	Log- linear	Non- parametric
V	-0.08	-0.18			-0.49 ***	-1.55 ***		
	(0.08)	(0.34)			(0.13)	(0.49)		
N^2		0.01				0.06 **		
		(0.02)				(0.02)		
n(N)			-0.42				-3.26 ***	
			(0.59)				(0.92)	
V=2				-0.88				-4.79
				(2.01)				(4.67)
V=3				0.04				5.06
				(0.85)				(1.56)
V=4				0.77				5.12
N. 5				(1.02)				(1.95)
V=5				-0.68				3.44
N_6				(1.27)				(1.00)
v=0				(1.22)				(1.62)
N-7				(1.55)				(1.05)
v = 7				(0.78)				(1.47)
V-8				1 66 **				3.64 **
-0				(0.72)				(1.50)
V-9				-3.05 **				3 43 *
				(1.42)				(1.86)
D (Western)	0.95	0.93	0.94	1.01	1.76	1.52	1.68	1.71
(water)	(1.65)	(1.66)	(1.65)	(1.66)	(2.38)	(2.35)	(2.38)	(2.56)
D	1 29	0.79	1 48	1.83	-57 83 ***	-62.51 ***	-59 33 ***	-56.03 ***
(Treatment plant)	(6.88)	(7.31)	(7.10)	(7.61)	(14 31)	(14.68)	(14.42)	(17.14)
	5 31	5 27	5 38	5 90	-10 50 **	-10.73 **	-10.33 **	-12 20 **
(Network)	(3.48)	(3.52)	(3.48)	(3.81)	(5.10)	(5.12)	(5.12)	(5.09)
n(Treatment canacity)	0.23	0.28	0.22	0.11	5 28 ***	5 67 ***	5 42 ***	5 04 ***
n(1)eumeni eupueny)	(0.55)	(0.59)	(0.57)	(0.61)	(1.25)	(1.30)	(1.27)	(1.35)
n(Concrete tunnel length)	-0.17 *	-0.17	-0.18 *	-0.27 **	0.58 ***	0.61 ***	0.58 ***	0.69 ***
	(0.10)	(0.11)	(0.10)	(0.11)	(0.17)	(0.17)	(0.17)	(0.19)
n(Iron pipeline length)	-0.13	-0.12	-0.13	-0.19	0.92 ***	0.95 ***	0.92 ***	0.99 ***
	(0.13)	(0.14)	(0.14)	(0.16)	(0.21)	(0.21)	(0.21)	(0.22)
Engineering cost	0.79 ***	0.78 ***	0.79 ***	0.81 ***	. ,	. ,	· /	. ,
0 0	(0.06)	(0.06)	(0.06)	(0.07)				
Estimated duration	-0.10 **	-0.09 **	-0.10 **	-0.10 *	0.08	0.10	0.10	0.04
	(0.05)	(0.05)	(0.05)	(0.05)	(0.06)	(0.06)	(0.06)	(0.07)
Donor 1	137.70 ***	1.07	1.01	-1.42	31.48 ***	29.99 ***	29.28 ***	21.56 ***
	(14.87)	(2.25)	(2.25)	(8.16)	(8.62)	(9.02)	(8.95)	(7.94)
Constant	-3.69	-3.03	-4.43	-7.91	111.28 ***	122.98 ***	117.58 ***	107.95 ***
	(10.68)	(14.32)	(13.83)	(11.11)	(21.93)	(21.47)	(20.69)	(25.30)
Obs.	329	329	329	329	329	329	329	329
R-squared	0.964	0.964	0.964	0.966	0.907	0.908	0.907	0.916
Number of dummies								
Country	12	12	12	12	12	12	12	12
Bidder nationality	20	20	20	20	20	20	20	20

Motor and Sowarage

Note: The dependent variable is the bidding amount. The robust standard errors are shown in parentheses. *, ** and *** indicate the 10%, 5% and 1% significance levels, respectively.

FOR WATER AND SEWERAGE:

Coef. of *N* is <u>negative and</u> <u>significant w/o</u> engineering cost.

Nonparametric: Coefs <u>are steadily</u> <u>declining w/o</u> <u>engineering cost</u>.

Coef. of engineering cost: 0.8 <u>(over-</u> <u>estimating).</u>

			Electr	icity			-		_	
	Linear	Quadratic	Log- linear	Non- parametric	Linear	Quadratic	Log- linear	Non- parametric		
N	-3.03 *** (0.99)	-8.02 * (4.71)	iniou	parametric	-3.61 (2.96)	-9.74 (10.58)	mou	parametric	_	
N^2		0.36 (0.31)				0.44 (0.71)				
$\ln(N)$			-19.53 *** (6.13)				-23.78 (16.90)			Coef. of N is negative
N=2				20.26 ** (8.18)				2.64 (26.72)	- T.	
N=3				6.91 (7.95)				-10.37 (25.69)		and significant.
N=4				-0.76 (5.00)				-0.85 (15.18)	I	
N=5				-12.73 (7.15)				-66.80 (29.23)		
D _(Dam)	-22.19 *** (8.26)	-22.61 (8.58)	-22.90 (8.42)	-27.49 (10.78)	-28.14 (20.85)	-28.65 (20.58)	-29.12 (20.32)	-70.90 (35.76)		Nonparametric:
D (Generator)	3.46 (7.91)	2.29 (7.73)	1.36 (7.49)	2.52 (6.71)	46.98 (31.18)	45.52 (32.42)	44.19 (32.18)	44.52 (29.77)		Coofe are steadily
D (Trans. lines)	18.79 ^{**} (9.06)	20.20 (10.30)	21.43 (10.24)	12.14 (12.38)	47.30 (49.15)	49.02 (50.03)	50.91 (49.03)	22.61 (49.22)		Coers are <u>steadiny</u>
D (Substation)	23.07 ^{***} (6.05)	23.49 ···· (5.99)	23.47 ···· (5.87)	(6.75)	-46.17 ** (21.46)	-45.62 ** (21.62)	-45.63 ** (21.12)	-49.27 ** (19.62)		declining: but appear
D (Civil work)	19.69 ^{***} (4.23)	20.46 ···· (4.37)	21.02 ···· (4.44)	25.01 ···· (5.09)	73.11 ** (28.54)	74.03 *** (28.24)	74.78 *** (28.19)	98.01 ···· (34.95)	·	<u>accinity, set appear</u>
Installed capacity	-0.01 (0.04)	-0.01 (0.04)	-0.01 (0.04)	0.02 (0.02)	0.35 ··· (0.17)	(0.17)	0.35 ··· (0.17)	(0.16)	I	to drop fast (too
Installed capacity ² 1/	-0.05 (0.04)	-0.05 (0.03)	-0.05 (0.03)	-0.05 ** (0.02)	-0.24 * (0.15)	-0.24 * (0.14)	-0.25 * (0.14)	-0.23 * (0.13)		fact2)
Number of turbines	7.83 ···· (1.60)	7.39 ···· (1.56)	8.06 ***	4.38 ** (2.06)	-8.13 (9.50)	-8.67 (9.24)	-7.74 (9.79)	-20.18 * (12.09)		1a51 f j .
Trans. line voltage	-0.27 (0.09)	-0.23 (0.10)	-0.25 (0.09)	-0.21 (0.09)	0.60 (0.44)	0.65 (0.45)	0.61 (0.44)	0.68 (0.41)		
Trans. line voltage ² 1/	0.51 *** (0.16)	0.47 ** (0.18)	0.48 *** (0.16)	0.46 ** (0.18)	-1.29 * (0.78)	-1.35 * (0.79)	-1.33 * (0.78)	-1.23 * (0.72)		Coet. of engineering
Trans. line length	0.06 (0.08)	0.00 (0.09)	0.03 (0.08)	-0.10 (0.10)	-0.76 * (0.45)	-0.83 (0.43)	-0.78 ° (0.45)	-1.17 (0.52)		aasti 1.2 (undar
Trans. line length ² 1/	-0.07 (0.09)	-0.05 (0.09)	-0.05 (0.09)	0.08 (0.11)	0.88 * (0.49)	0.90 * (0.49)	0.89 * (0.49)	1.31 ** (0.57)		COSI. 1.2 <u>(under-</u>
Engineering cost	1.22 ···· (0.10)	1.22 *** (0.10)	(0.10)	1.19 ···· (0.09)		0.00				estimating at time of
Estimated duration	-0.40 (0.20)	-0.20 (0.24)	-0.23 (0.20)	-0.04 (0.23)	-1.13 (0.76)	-0.88 (1.00)	-0.92 (0.83)	-0.19 (0.76)	I	
Donor I	43.86 (12.87)	39.10 (13.76)	38.57 (12.83)	33.44 (12.17)	85.61 (58.99)	(65.26)	/8.87 (61.85)	50.09 (47.43)		appraisal: cost
Constant	(13.90)	26.93 (19.17)	(15.24)	2.14 (16.53)	44.77 (39.23)	57.83 (52.50)	58.68 (42.45)	13.74 (51.41)	-	
Obs. R-squared	139 0.981	139 0.981	139 0.982	139 0.983	139 0.779	139 0.779	139 0.780	139 0.811		overrun).
Number of dummies	12	12	12	12	12	12	12	12		
Bidder nationality	12	12	12	12	12	12	12	12	_	

1/ For presentation purposes, the coefficients are multiplied by 1,000.
Note: The dependent variable is the bidding amount. The robust standard errors are shown in parentheses. *, ** and *** indicate

Summary of key estimation results

(there are more, but focus on part of the story here)

- Competition is good for procurement, for all sectors.
 - The bids almost continue decreasing with *N*: COMPETITION CUTS COSTS!

We also have a sense of the optimal number of bidders

- For road and water: 7
- For electricity, quickly diminishing...but may need at least 3.

Note that engineering cost estimates add information

- Overestimate project costs in roads and water
 - Estimated coef. 0.53 for road, 0.8 for water
- Underestimate project costs in electricity
 - 1.2 for electricity
- Now with this bid function and its detailed modeling of contract design (size, composition,...), can do a lot of policy relevant simulations, i.e.
 - How many bidders do we need to get efficiency?
 - How does the package composition change efficiency?
 - What is the potential saving from improvement in procurement rules?

How much does the *average* infrastructure cost *per unit* change with competition?

....When evaluating the estimated equation at sample mean values....

Design is crucial in particular when competition is limited.... Small size with little competition leads to extremely high costs!

How much scope for gains from more competition?

Gains from improved procurement efficiency are HUGE:

- In the book, we explain how we estimated a savings of at least 8 % of total infrastructure procurement costs.
 - Larger than the observed corruption costs (i.e., 3.5% of contract amount for SSA).
 - Not minor from a fiscal viewpoint (8% of 1.5-4% of GDP is a lot!)

Competition is the keys to these efficiency gains

...SO HOW CAN WE GET MORE BIDDERS???

Should we try to attract more fringe (maybe weaker) **bidders?**

A bit more of auction theory

- <u>Theoretical prediction:</u> If a weak bidder faces a strong bidder rather than another weak bidder, s/he bids more aggressively (Maskin and Riley, 2002).
 - □ In theory, a weak bidder is defined to have a different distribution of underlying valuations (costs) from a strong bidder...roughly speaking $F_w(c)$ first-order stochastically dominates $F_s(c)$.
- <u>Empirics</u>: In state road procurements, new entrants (i.e., weak bidders) have been found to be more aggressive (De Silva, et al., 2002).
- Empirical questions: who is the weak bidder? How to define? Market concentration?
 - In our analysis, divide the sample into two groups: auctioned before 2002 (about 20% of total sample) and after 2002 (80%).
 - Define a bidder as *incumbent* if s/he includes a firm who was awarded in the first sub-sample period at least once.
 - Define the rest as entrant.

Market concentration was not as high as we were expecting...even if some were too often winners

	Concentration of Contract Awards										
	No. of Number of firms										
	wins	Road	Wate	r	Power						
	1	74	,	79	43						
	2	17	,	21	11						
	3	11		5	4						
	4	2			1						
	5	3			1						
	6			1							
	7	1									
	Working and F	g Classificat Fringe Bidde	tion of Ine ers: 2003	cumbo -2007	ent						
			Roads	Water	Electricity						
Num	iber of auctions		45	60	33						
Num	iber of bidders		188	236	99						
0	f which, incumbent bio	dders	62	39	36						
0	f which, fringe bidders	6	126	126 197							
	Of which, bidders fac	ing incumbents	71	66	38						

Concentration Ratio

Empirical model

Based on our basic model.

 $b_{it} = \alpha_1 D_{Fringe_i} + \alpha_2 D_{FringeFacedIncumbent_{it}} + \alpha_3 ShrInc_i + \alpha_4 PastWin_i + X'_t \beta + \delta \ln N_t + \varepsilon_{it}$

But we add a few variables:

- Dummy for fringe (entrant, weak) bidders to capture their general unobserved characteristics
- Dummy for fringe bidders who faced with incumbents to test Maskin and Riley's hypothesis
- Share of incumbents in that auction to capture an alleged notion of less competitiveness among a set of common players in infrastructure auctions.
- No. of wins in the pre-period (1997-2002): a proxy of firm's efficiency (low cost nature)

Main estimation results

- **1.** Competition from new entrants has helped
- 2. Fringe bidders were aggressive as expected.
- 3. Share of incumbents is strongly positive ...indicating an anticompetitive effect as expected in basic theory.
- 4. <u>Policy implications:</u>...quite expected
 - scope to increase role for fringe/entrant bidders for procurement efficiency.
 - ...yet quite difficult to implement in practice under current procurement rules in ODA

Is Joint bidding in infrastructure procurement good or bad for competition?

Auction theory on joint bidding ?

Theoretical prediction: Mixed story

- Resource restriction view: Pooling resources reduces the barrier to entry (Hendricks and Porter, 1992). +
- Information aggregation reduces competition (Krishna and Morgan, 1997). -
- The two effects work and the former is dominated by the latter (Mares and Shor, 2008), but it all adds to a net anticompetitive effect. -
- However: Free coalition intensifies competition (Cho et al., 2002) +

Empirics:

- Joint bidding is pro-competitive in oil lease auctions (Moody and Kruvant, 1988; Hendricks and Porter, 1992).
- But ... only for local bidders in ODA projects (limi, 2004).

Common coalition forms in infrastructure procurements? more local JV in road and water and more foreign JV for electricity.

Classification of Joint Bidding

Joint Bidding Practices at Bidder Level

	Roa	ds	Wat	er	Electr	icity
	Obs.	Share	Obs.	Share	Obs.	Share
Including local firm(s)	394	70.3	329	79.6	139	35.3
Including foreign firm(s)	394	37.6	329	29.2	139	71.2
loint bidding	394	23.4	329	25.8	139	31.7
Including local firm(s)	394	19.5	329	21.9	139	9.4
Including foreign firm(s)	394	11.7	329	12.8	139	28.8
All local firms	394	11.7	329	13.1	139	2.9
All foreign firms	394	3.8	329	4.0	139	22.3
Both local and foreign firms	394	7.9	329	8.8	139	6.5

The model we test

- Based again on a adaptation of our basic model.
- Additional concern about endogeneity of joint bidding decision.
 - Particular firms might form a bidding coalition.
 - E.g., resource restraint view
 - Lemon market (those who are looking for partners are weak bidders, failing to make a coalition).
 - Treatment effect model

$$b_{it} = \alpha JBID_{it} + X'_{t}\beta + Z'_{i}\gamma + \delta \ln N_{t} + \varepsilon_{it}$$
$$JBID_{it} = \begin{cases} 1 & \text{if } JBID_{it}^{*} = W'_{t}\theta + u_{it} \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Main estimation results

- Endogeneity:
 - Statistically not severe for road and electricity.
 - For water, OLS is downward biased....possibly implying that truly efficient firms are more likely to depend on joint bidding and at the same time to make lower bids.
- We find that joint bidding is broadly anti-competitive... <u>BUT</u> this varies across sectors and <u>depending on the</u> <u>nature of the joint venture.</u>
 - <u>Road</u>: Foreign-only joint bidding is anti-competitive; foreign and local coalition is pro-competitive.
 - <u>Water:</u> Joint bidding is clearly anti-competitive, especially if foreign firm(s) are included.
 - <u>Electricity:</u> Far from conclusive.

Policy implication: Encourage joint bidding involving local firms.

Conclusion

Scope to cut costs exists

- Increased competition could reduce procurement costs and save aid resources considerably...some 8% of total costs.
- Too much of a one size fits all in design of auctions given the heterogeneity of the sector

A few more general conclusions:

- Avoid small contracts!
- **Encourage new entrant participation.**
- Encourage joint bidding practices, but focus on JV with local firms....
- Do not rely too much on foreign joint bidding only.
- Don't underestimate governance...it may matter

LAST POINT... IF WE HAVE THE TIME How much would improved governance help cut procurement costs?

A few new PRELIMINARY results on how much governance explains unit costs (not in the book...ongoing research) Two questions:

- Did governance contribute to reduce competition in this market?
 - With or without a regulators to supervise the sector
 - With or without financial rigor
- Did poor governance contribute to stimulate opportunistic practices such as strategic low-balling?

A model to test the impact of governance on corruption Num_{ist} = f (gov_{ist}, X_{ist}, c_s, c_l)

With

- Num_{ist} is the number of bidders affected by the level of governance, gov, in each sector s (i.e. Pooled data from water, electricity and roads)
- X is the vector of other contract (auction) specific characteristics (to control for heterogeneity across auctions)
 - include the engineering cost estimates, project duration, whether or not a regulatory agency is in place, a financial sustainability proxy (i.e. Unaccounted for water and electricity and local gaz price/Luxembourg price)
- c_s are sector specific fixed effects (to deal with omitted or unobserved variables)
- □ c₁ are country specific fixed effects

Is low-balling a problem in this sample?

- Estimate the following model
 - Simple OLS
 - As well as a zero truncated negative binomial model
- $Low_{ist} = g (gov_{ist}, X_{ist}, c_s, c_l)$
- With low is the difference btw the winning bid and the average bid in the tender
- If low is negatively affected by gov, then it validates our concern

Results so far

- Financial sustainability matters positively to the number of bids for all sectors
 - Wald test suggests it matters a lot more to the water sector than to roads and electricity
- Regulatory accountability also, but it is not statistically significant
- On low balling
 - No strong results
 - bids are lower when governance is weaker but not strong statistical significance (just above 10%)
 - Stronger governance leads to bid convergence, suggesting that it leads to more competition